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The statistical mechanical description of two-dimensional inviscid fluid turbulence
is reconsidered. Using this description, we make predictions about turbulent flow
in a rapidly rotating laboratory annulus. Measurements on the continuously forced,
weakly dissipative flow reveal coherent vortices in a mean zonal flow. Statistical
mechanics has two crucial requirements for equilibrium: statistical independence of
macro-cells (subsystems) and additivity of invariants of macro-cells. We investigate
these requirements in the context of the annulus experiment. The energy invariant,
an extensive quantity, should thus be additive, i.e. the interaction energy between
a macro-cell and the rest of the system (reservoir) should be small, and this is
verified experimentally. Similarly, we use additivity to select the appropriate Casimir
invariants from the infinite set available in vortex dynamics, and we do this in such a
way that the exchange of micro-cells within a macro-cell does not alter an invariant
of a macro-cell. A novel feature of the present study is our choice of macro-cells,
which are continuous phase-space curves based on mean values of the streamfunction.
Quantities such as energy and enstrophy can be defined on each curve, and these lead
to a local canonical distribution that is also defined on each curve. The distribution
obtained describes the anisotropic and inhomogeneous properties of a flow. Our
approach leads to the prediction that on a mean streamfunction curve there should
be a linear relation between the ensemble-averaged potential vorticity and the
time-averaged streamfunction, and our laboratory data are in good accord with this
prediction. Further, the approach predicts that although the probability distribution
function for potential vorticity in the entire system is non-Gaussian, the distribution
function of micro-cells should be Gaussian on the macro-cells, i.e. for curves defined
by mean values of the streamfunction. This prediction is also supported by the data.
While the statistical mechanics approach used was motivated by and applied to
experiments on turbulence in a rotating annulus, the approach is quite general and
is applicable to a large class of Hamiltonian systems, including drift-wave plasma
models, Vlasov–Poisson dynamics, and kinetic theories of stellar dynamics.

1. Introduction
1.1. Overview

Statistical mechanics provides a way to calculate the macroscopic properties of matter
from the behaviour of microscopic constituents. Instead of considering all motions
of the individual constituents, one describes observable quantities averaged over
constituent Hamiltonian trajectories, and averages are evaluated using the probability
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distribution of possible microstates. Likewise, fluid systems with a local balance
between dissipation and forcing have been described by statistical mechanics with
the inclusion of constraints based on invariants of the dynamics. In general, such
statistical theories for fluids are based on the idea that the macroscopic behaviour
of the fluid turbulence can be described without knowing detailed information about
small-scale vortices.

The justification of statistical mechanics based on ideal two-dimensional fluid
equations is open to question, given the existence of forcing, dissipation, three-
dimensional effects, temperature gradients, etc., that certainly occur in real fluid flows.
Moreover, one must square the idea of cascading with the approach to statistical
equilibrium. Ultimately, such a justification is very difficult and would rely on delicate
mathematical limits. However, its success amounts to the idea that the fluid system
can in some sense be described by weakly interacting subsystems, where the behaviour
of a single subsystem can be described by weak coupling to a heat bath that embodies
all of the other subsystems and all of the omitted effects. In the end ‘the proof of the
pudding is in the eating’, and our justification is based on experimental observations.

Intimately related to the existence of subsystems is the question of which invariants
to incorporate into a statistical mechanics treatment of fluids. One aim of the present
paper is to investigate this question. We do this both conceptually and experimentally
and come to the conclusion that quadratic invariants (energy and enstrophy) are
most important. Our conclusion follows from the observation that these invariants
possess the property of additivity.

The microscopic dynamics of conventional statistical mechanics is finite-dimensi-
onal, but to describe macrosopic phenomena one takes the thermodynamic limit in
which the number of degrees of freedom tends to infinity. However, the dynamics of a
two-dimensional fluid is already infinite-dimensional and possesses an infinite number
of invariants; so, in order to make progress with a statistical mechanics approach
one must extract a finite-dimensional model, and such a model cannot conserve all
of the invariants of the original fluid system. In calculations one may also take
limits of this finite-dimensional model, but the results of these limits may depend
upon which of the invariants are maintained. Additivity of macroscopic invariants
and statistical independence of subsystems are crucial properties in conventional
statistical mechanics (see e.g. Landau & Lifshitz 1980). Because not all invariants of
a system are additive, this property can be used to select invariants for statistical
mechanics from the infinite number possessed by two-dimensional fluid systems.

Related to the choice of additive invariants is the choice of subsystems. This choice
requires the identification of two scales, a macroscopic scale and a microscopic scale,
which we call ∆ and δ, respectively, and phase-space cells of these characteristic sizes
are considered. In classical statistical mechanics, the micro-cells usually refer to indi-
vidual particles, while the macro-cells, the subsystems, are selected to be large enough
to contain many particles yet small enough to have uniform invariants. We address in
detail the choice of these cells for the fluid in § 5, but it is clear that a macro-cell should
contain many micro-cells, yet be small enough so that the vorticity and streamfunction
are constant. This condition is sufficient for statistical independence, but the converse
is not always true. In any event we seek to define macro-cells that are nearly
statistically independent and consider only invariants that are additive over these cells.

A second aim of the present work is to propose the idea that temporal mean
values of the streamfunction provide a natural coordinate system for describing
inhomogeneous turbulence, a coordinate system that can be used to define statistically
independent subsystems. We suggest this idea because contours of the streamfunction
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for two-dimensional inviscid fluid flow tend to be smooth and because there tends to be
a strong statistical dependence of vorticity or potential vorticity along those contours.
Streamfunction contours are much smoother than vorticity contours because of the
smoothing property of the inverse Laplacian. Therefore, there is a natural separation
of length scales: the large scale associated with variation of the streamfunction
contours and the fine scale that is needed to resolve the vorticity or potential
vorticity. We take these to be our scales ∆ and δ, respectively. We test this idea
experimentally by measuring the independence of subsystems so defined. We then
construct a theory based on this definition of subsystem together with the additivity
of quadratic invariants, and compare its predictions with the measured vorticity
probability density function.

1.2. Background

In a remarkable series of papers Burgers (1929a–c, 1933a–d) (reprinted in
Nieuwstadt & Steketee 1995) appears to be the first researcher to apply statistical
mechanics ideas to the description of fluid turbulence. Many basic ideas used by
later researchers were introduced first by Burgers in these rarely cited papers. Burgers
introduced both lattice and Fourier models and showed that such models satisfy
Liouville’s theorem when viscosity is neglected. He used a counting argument to
derive an entropy expression and obtained a corresponding entropy maximization
principle. He proposed a microscopic scale for describing turbulent motion during
short intervals of time and defined macroscopic quantities by counting possible
streamfunction realizations for sequences of time intervals. His analysis is based on
the Reynolds stress equation, and he obtained a probability distribution that can be
used to calculate the mean value of the Reynolds stress.

Motivated by the work of Burgers, Onsager (1949) took up the subject and
considered a representation of the vorticity field in terms of a set of point vortices, zero-
area vortices, of equal strength. Because this results in a finite-dimensional particle-like
Hamiltonian system, Onsager could proceed to apply techniques of classical statistical
mechanics. He gave arguments for the existence of negative temperatures and the
occurrence of coherent structures in a confined region, which are often observed in
nature. Related ideas have been further pursued by many researchers, e.g. Joyce &
Montgomery (1973), Matthaeus et al. (1991), Eyink & Spohn (1993), Yin, Clercx &
Montgomery (2004) (see Eyink & Sreenivasan (2006) for a recent review). For example,
Joyce & Montgomery (1973) studied the statistical mechanics of point vortices within
a mean field approximation, and argued that in the negative temperature regime,
large like-signed vortices are the most probable state.

Lee (1952) projected three-dimensional fluid equations (including magnetohydro-
dynamics) onto a Fourier basis and truncated to obtain a finite-dimensional system.
Evidently unaware of the early work of Burgers (1933d), he again demonstrated that
his truncated system satisfies a version of Liouville’s theorem and was thus amenable
to techniques of statistical mechanics. Later, Kraichnan considered two-dimensional
fluids (Kraichnan 1967, 1975; Kraichnan & Montgomery 1980) and noted that out of
the infinite number of invariants, two quadratic ones, the so-called rugged invariants,
remained invariants after truncation. Kraichnan & Montgomery argued that these
rugged invariants are the important ones, and obtained an equilibrium state, which
is related to that obtained by minimum-enstrophy arguments put forth by selective
decay hypotheses (Leith 1984; Maxworthy 1984; Bouchet & Sommeria 2002). Also,
using Kolmogorov-like dimensional arguments and the rugged invariants, Kraichnan
argued for the existence of direct and inverse cascades for two-dimensional turbulence
(Kraichnan 1967).
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The two-dimensional Euler equation, like the Vlasov and other transport equations,
can be viewed as mean field theory. Such equations are known to generate fine
structure in the course of evolution. This led Lynden-Bell (1967) to consider a coarse-
graining procedure coupled with the idea of preserving all of the infinity of invariants
such theories possess. He applied his ideas in the context of stellar dynamics, but
the ideas are akin to those used in treatments of the classical electron gas by
generalizations of Debye–Hückle theory (e.g. Van Kampen & Felderhof 1967). Later,
such ideas were used in the fluid context by Robert (1991), Robert & Sommeria
(1991, 1992), Miller (1990), and Miller, Weichman & Cross (1992), and again in the
stellar dynamics context by Chavanis, Sommeria & Robert (1996). Our development
to a significant extent parallels that of these authors. In these works a microscopic
probability distribution represents a local description of the small-scale fluctuations of
microscopic vortices. The streamfunction is assumed to be uniform on the microscopic
scale, and an equilibrium state is obtained by maximizing the Boltzmann entropy of
microstates, an entropy that is obtained by a counting argument first given by
Lynden-Bell. This produces a most probable state.

More recently, the necessity of incorporating the infinite number of invariants in
statistical mechanics theories has been brought into question, and theories based
on finite-dimensional models with fewer constraints have been developed. Majda &
Holen (1997) have argued that including an infinite number of invariants provides
no additional statistical information, and Turkington (1999) has argued that previous
theories have not properly handled the neglected small-scale phenomena, and he
has proposed a theory that uses inequality constraints associated with only the
convex invariants. Our approach is perhaps most closely aligned to these works, but
is distinguished by the fact that the invariants chosen are explicitly based on the
additivity argument, the choice of subsystems, and experimental observation.

Natural phenomena in atmospheres and oceans have served as a motivation for
the application of statistical mechanics to two-dimensional fluid flow (e.g. Salmon,
Holloway & Henderschott 1976). Examples include zonal flows in planets, such as
the jet stream and the polar night jet, and organized coherent vortices, such as
the Great Red Spot of Jupiter (Maxworthy 1984; Sommeria, Meyers & Swinney
1988, 1991; Marcus 1993; Bouchet & Sommeria 2002). Attempts have been made
to explain such naturally occurring phenomena in terms of the coherent structures
found to emerge in quasi-geostrophic and two-dimensional turbulence after long-time
evolution. With external small-scale forcing a few long-lived and large structures
resulting from nonlinear merging processes are seen to be stable self-organized states
that persist in a strongly turbulent environment (McWilliams 1984; Boucher, Ellis &
Turkington 2000). These structures have been studied over many years, often because
of their relevance to large-scale geophysical and astrophysical flows (Marcus 1993). In
statistical mechanics, such steady states with large structures are envisioned to be the
most probable state arising from some extremization principle. Various extremization
principles (e.g. Leith 1984) have been proposed with selected global invariants of
the system used as constraints. Observations of turbulent flow with large coherent
structures in a rotating annulus (Sommeria et al. 1988; Baroud et al. 2002, 2003;
Aubert, Jung & Swinney 2002; Jung et al. 2004) have led us to reconsider statistical
mechanics in the context of rapidly rotating systems.

1.3. Notation and organization

By necessity this paper contains much notation. To aid the reader we give a brief
summary here. As noted above, statistical mechanics deals with two scales: the
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microscopic scale δ, characteristic of microscopic m-cells, and the macroscopic scale
∆, characteristic of macroscopic M-cells. Several averages are considered. The symbol
〈 · 〉S denotes an average with probability density PS , where choices for the subscript S

will be used to delineate between different cases. The appropriate volume measure will
be clear from the context but is also revealed by the argument of PS . Averages with
uniform density are denoted by ≺ ·�S , where the subscript denotes the integration
variable. An exception is the time average, which we denote by an overbar. Thus, the

time average of a function is denoted by f̄ , and f̄ =
∫ T

0
f dt/T = ≺f �t . The limits

of integration for this kind of average will either be stated or will be clear from the
context. We denote the potential vorticity field by q(x, y, t), by which we always mean
a function. For the potential vorticity distribution on an M-cell (subsystem) we use ζ ,
an independent variable. Another source of possible confusion is that the symbol β

is used for the energy Lagrange multiplier, as is conventional in statistical mechanics,
while the beta-effect of geophysical fluid dynamics is embodied here in the symbol h.

The paper is organized as follows. The experiment is described in § 2 and equations
that govern the dominant physics are reviewed in § 3. In § 4 we describe some basic
ideas about statistical mechanics, as needed for the application to the fluid system of
interest. In § 5 we describe statistical mechanics in the mean field approximation and
compare predictions with experiments. Here we show that predictions of the theory
are in accordance with experiments. Finally, in § 6 we conclude.

2. Experiment
The experiments are conducted in a rotating annulus (figure 1). The annulus has

an inner radius ri = 10.8 cm, outer radius ro = 43.2 cm, a sloping bottom, and a flat
transparent lid. The bottom depth varies from 17.1 cm at the inner radius to 20.3 cm
at the outer radius, giving a bottom slope of η = − 0.1. For the data analysed in this
paper, the rotation frequency of the annulus is Ω/2π = 1.75 Hz. An azimuthal jet is
generated in the annulus by pumping water in a closed circuit through two concentric
rings of holes at the bottom. Fluid is pumped into the annulus through an inner
ring at r = 18.9 cm and extracted through an outer ring at r = 35.1 cm; both rings
have 120 circular holes. Each hole has a diameter of 2.5 mm, and the total pumping
rate is 150 cm3 s−1. The action of the Coriolis force on the outward flux generates
a counter-rotating azimuthal jet. A counter-rotating flow is generally more unstable
than a co-rotating flow (Sommeria et al. 1991).

The water is seeded with neutrally buoyant particles (polystyrene spheres, diameter
150–200 µm). Light-emitting diodes produce a 3 cm thick horizontal sheet of light
that illuminates the annulus at mid-depth. The particles suspended in the water are
imaged with a camera located 2 m above the annulus, and the camera rotates with
the tank. Particle image velocimetry (PIV) is used to obtain the full two-dimensional
velocity field (Baroud et al. 2003).

The flow can be characterized by the Reynolds, Rossby, and Ekman numbers.
The maximum velocity Umax≈ 22 cm s−1, the length L = 16.2 cm (taken to be the
distance between the two forcing rings) and the kinematic viscosity ν = 0.01 cm2 s−1

yield a Reynolds number UL/ν = 3.5× 104, indicating that the flow is turbulent. The
Rossby number (ratio of inertial to Coriolis force) is ωrms/2Ω =0.11 (where ωrms

is the r.m.s. vorticity), which indicates that the Coriolis force is dominant, as is the
case for planetary flows on large length scales. Finally, the small Ekman number,
ν/2L2Ω = 3 × 10−4, indicates that dissipation in the bulk is small. The Ekman time,
τE = Lh/2(νΩ)1/2 (where Lh is the mean fluid height) for dissipation in the boundary
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Figure 1. (a) Schematic diagram of the experimental apparatus. The tank rotates at 1.75Hz.
Flow is produced by pumping water through a ring of inlets (I) and outlets (O) in the bottom
of the tank. The Coriolis force acts on the radially pumped fluid to produce a counter-rotating
jet. (b) The vorticity field and contours of streamfunction at mid-height of the tank, determined
from particle image velocimetry measurements. The streamfunction contours are equally spaced
in streamfunction value. (c) The azimuthal velocity averaged over both time and azimuthal
angle, as a function of radial position. (d) The vorticity (solid line) and streamfunction (dashed
line) averaged over time and azimuthal angle, as a function of radial position.

layers is 30 s, a time much longer than the typical vortex turnover time, 2 s. The
dimensionless numbers indicate that the flow is quasi-geostrophic; previous studies
of turbulence in the annulus have indeed confirmed the strong two-dimensionality of
the flow (Baroud et al. 2003)

3. Dynamics
The barotropic assumption is widely used to describe the flow inside the tank. The

equation of motion for a barotropic fluid with topography is given by

∂q

∂t
+ u · ∇q = D + F , (3.1)

where q =(−∇2ψ + 2Ω)/Lh is the potential vorticity, Lh is the tank depth, ψ is
the streamfunction, u = (∂ψ/∂y,−∂ψ/∂x), D denotes dissipation, such as that due to
molecular viscosity, ν∇2ω, or Ekman drag, −ω/τE , and F denotes a vorticity source
due to the pumping. Often the potential vorticity is approximated by

q = −∇2ψ + h , (3.2)
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where h accounts for the beta-effect and is here a linear function of radius,
h = 2Ωηr/Lh where η is the bottom slope. Over the years strong evidence has accumul-
ted that (3.1) describes the dominant features of the experiment (Sommeria et al. 1991;
del-Castillo-Negrete & Morrison 1992; Meyers, Sommeria & Swinney 1993; Solomon,
Holloway & Swinney 1993).

For inviscid flow with zero Rossby number, there is no vertical variation in the
velocity (Rossby 1939), and there is evidence that to leading order the drag and
forcing terms cancel. We are primarily interested in the statistics of motions that
occur on the vortex turnover time, and these are governed by the inviscid equation,

∂q

∂t
+ u · ∇q = 0, (3.3)

which is a Hamiltonian theory.
A manifestation of the Hamiltonian nature of two-dimensional Euler-like flows such

as (3.3) is the finite-dimensional Hamiltonian description of point vortices provided
by Kirchhoff (1883), which played an essential motivating role in Onsager’s theory
(e.g. Eyink & Sreenivasan 2006). For a distributed vorticity variable such as q the
Hamiltonian form is infinite-dimensional and is given in terms of a non-canonical
Poisson bracket as follows:

∂q

∂t
= {q, H} = [ψ, q], (3.4)

where the Hamiltonian H [q] =
∫

ψ(q − h) dx dy/2, and the non-canonical Poisson
bracket is given by

{F, G} =

∫
q

[
δF

δq
,
δG

δq

]
dx dy, (3.5)

with F and G being functionals, δF/δq the functional derivative, and [f, g] = fxgy −
fygx . Observe that u · ∇q = − [ψ, q]. This Hamiltonian formulation of the two-
dimensional Euler equation appeared in (Morrison 1981a,b, 1982), based on the
identical structure for the Vlasov–Poisson system (Morrison 1980), and in Olver
(1982). A review of this and other forumlations can be found in Morrison (1998).
The infinite family of Casimir invariants C[q] =

∫
C(q) dx dy, where C is arbitrary,

satisfies {F, C}=0 for all functionals F , and is thus conserved by (3.3). The presence
of these invariants is one way that the statistical mechanics of fluids differs from that
of particle systems.

4. Statistical mechanics and fluid mechanics
As noted in § 1, many attempts have been made to apply statistical mechanics to

fluids and other infinite-dimensional systems. In this section we describe our notation
and discuss some basic ideas.

4.1. State variables

In classical statistical mechanics the microscopic dynamics is governed by Hamilton’s
equations and the phase space is the 2N -dimensional manifold with canonical
coordinates (Qα, Pα), α =1, 2, . . . , N , where (Q1, . . . QN ) is the configuration
coordinate and (P1, . . . , PN ) is the corresponding canonical momentum. Typically
N , the number of degrees of freedom, is a very large number ∼ 1023. We call
this 2N-dimensional phase space Γ , a standard notation introduced by Ehrenfest &
Ehrenfest (1959). Our fluid is assumed to be governed by (3.3), an infinite-dimensional
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Hamiltonian theory, and thus the instantaneous state of our system is determined by
the vorticity-like variable q(x, y), which we suppose is contained in some space of
functions G. The index α for coordinates of Γ is analogous to the Eulerian position
(x, y), a point in the physical domain occupied by the fluid, which is viewed as an
index for G.

In conventional statistical mechanics, the microscopic dynamics is finite-
dimensional, and one attempts to explain phenomena on the macroscopic level by
considering the thermodynamic limit in which N → ∞. However, for a fluid, the
dynamics is already infinite-dimensional, and thus as noted in § 1, to apply statistical
mechanics researchers have introduced various finite-dimensional discretizations.
Onsager’s description of the continuum vortex dynamics in terms of a collection
of point vortices amounts to the specification of the coordinates of the manifold
analogous to Γ as the spatial positions of the point vortices, (x1, . . . xN, y1, . . . , yN ).
Alternatively, Lee’s representation of a three-dimensional fluid in terms of a truncated
Fourier series has the Fourier amplitudes being coordinates of a space analogous to
Γ . This procedure was carried over to two dimensions by Kraichnan & Montgomery
(1980). For our potential vorticity variable the Fourier amplitudes are given by
qk =

∫
exp i(kxx + kyy) q(x, y) dx dy, where k =(kx, ky). Another alternative is to

replace the continuum vorticity by a lattice model (e.g. Burgers 1929a; Robert
1991; Robert & Sommeria 1991, 1992; Miller 1990; Miller et al. 1992; Majda &
Holen 1997; Turkington 1999), i.e. an expansion in terms of tent functions or finite
elements of scale size δ. In the present context the vorticity is replaced by its values on
the lattice, qi =

∫
Ki(x, y; xi, yi)q(x, y) dx dy, where the kernel Ki is typically chosen

to represent a square lattice with a finite number N of sites located at (xi, yi). In
general N =NxNy , where Nx and Ny are the number of lattice points in the x- and
y-directions, respectively. We will refer to this discretization as a division into m-cells.

Given a finite-dimensional system one can make various assumptions, e.g. the
probabilistic assumptions of ‘molecular chaos’, but this requires a notion of phase-
space volume conservation.

4.2. Phase space volume and Liouville’s theorem

In classical statistical mechanics one calculates averages over the manifold Γ , and
the natural volume element is given by

∏N

α = 1 dQαdPα . However, for G the situation
is not as straightforward, and so we explore candidates for the analogous volume
element.

4.2.1. Volume element

The calculation of averages in a statistical theory requires a phase-space measure,
Dq , which is a sort of volume element for G. The volume element can be interpreted
as a probability measure defined on functions that take values between q and q + dq .
Averages calculated using the probability measure are functional integrals akin to
those used in Feynman’s path-integral formulation of quantum mechanics and in
field theory (e.g. Schulman 1981; Sundermeyer 1982). The various discretizations
introduced above have been employed to give meaning to functional integrals, but
the Fourier and lattice models are most common.

For the Fourier discretization, Kraichnan & Montgomery used the volume element
Dq =

∏
k dqk, where the product is truncated at some maximum wavenumber.

Alternatively, the volume element for lattice models is written as Dq =
∏N

i dqi ,
where dqi is a volume element associated with the potential vorticity varying from
q to q + dq in a lattice partition (xi, yi), and N = NxNy is, as above, the number
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of lattice sites, which have a scale δ. Here, a total volume element Dq is a product
of volume elements of each lattice site dqi . In the case of a finite small lattice, dqi

becomes a one-dimensional volume, i.e. dqi = q(xi, yi) + dq(xi, yi) − q(xi, yi) at the
lattice point (xi, yi) of the physical two-dimensional space. In order for a notion of
measure based on phase-space volume to be useful, the volume must be preserved in
the course of time.

4.2.2. Liouville’s theorem

Preservation of phase-space volume is assured by Liouville’s theorem, an important
theorem of mechanics. As noted above, Burgers and Lee showed that a version of
Liouville’s theorem applies to the system governing the Fourier amplitudes for the
inviscid fluid. For vorticity dynamics the amplitudes satisfy

q̇k =
∑
l,m

εklm

|l |2 (ql − hl ) qm, (4.1)

where hl is the Fourier transformation of the beta-effect and εklm = ẑ · (l ×m)δ(k + l +
m) is completely antisymmetric, i.e. εklm =−εl km =−εmlk and εkkm = εklk = 0. Therefore,
antisymmetry directly implies Liouville’s theorem,

∑
k ∂q̇k/∂qk ≡ 0.

Similarly, we have shown directly that a version of Liouville’s theorem applies to
the lattice model. We recently discovered that this version was anticipated in Burgers
(1929b). This result was also inferred in Turkington (1999). We assume periodic
boundary conditions. The lattice model discretization can be viewed as an expansion
of the vorticity in terms of a tent function basis (e.g. Fletcher 1980). Upon multiplying
the equation of motion by a basis function, as is typical with Galerkin projection,
and representing all derivatives as differences, (3.3) becomes

q̇i =
∑
j,k

Bijkψjqk, (4.2)

which is an equation for the potential vorticity at the lattice point i. Assuming a
periodic lattice, the quantity Bijk is easily seen to be completely antisymmetric, i.e.
Bijk = −Bjik = −Bkji and Biji =Biik =0, just as was the case for εklm. Therefore,
Liouville’s theorem follows,

∑
i

∂q̇i

∂qi

=
∑
i,j,k

Bijk(Mjiqk + δkiψj ) =
∑
i,j

(B ′iij qj + Bijiψj ) = 0, (4.3)

where each term of the last sum vanishes. Here the matrix M represents the inverse
Laplacian and B′ is another matrix that has the same antisymmetry property as B.

4.3. Canonical equilibrium distribution

Having defined phase space and verified Liouville’s theorem, we are ready to write a
partition function and to define phase-space averages. The natural expression for the
partition function associated with the canonical (Gibbs) ensemble is

Zc =

∫
G

e−βH [q]−C[q]Dq , (4.4)
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where H is the Hamiltonian of § 3 and C denotes the infinite family of Casimir
invariants. Averages corresponding to (4.4) are given by

〈F 〉c =

∫
G

F [q] Pc[q; β,C]Dq, (4.5)

where F is a functional of q and the phase-space probability density is given by

Pc[q; β,C] =Z−1
c e−βH [q]−C[q]. (4.6)

Expressions (4.4) and (4.5) are functional integrals (Schulman 1981; Sundermeyer
1982), and the intent is to give them meaning by discretizing as in § 4.1 and then
taking the limit N → ∞ and δ → 0. Finding unique well-defined results with this
procedure for such integrals, with other than quadratic functionals in the exponent,
is usually a difficult task. Consequently, a mean field approach has been taken, which
we turn to in § 5.

An alternative to the direct evalution of (4.5) is to appeal to the fact that the
dynamics of (3.3) is an area-preserving rearrangement (e.g. Lieb & Loss 2001). This
means for an initial condition q0, that the solution at time t is given formally
by q(x, y, t) = q0(x0(x, y, t), y0(x, y, t)), where (x0(x, y, t), y0(x, y, t)) are the initial
conditions of the characteristics, which satisfy ∂(x0, y0)/∂(x, y) = 1. The Casimir
invariants are associated with relabelling symmetry (e.g. Salmon 1982; Padhye &
Morrison 1996) and possess the same value when evaluated on functions that
are related by rearrangement. Thus, if one restricts the domain of integration
G to be rearrangements of a given function, denoted by GR, then we should
obtain the same answer because 〈F [q]〉R= F [q] for functionals with integrands
that depend only on q , such as Casimirs and exp(C[q]). Here 〈 〉R is defined with
PR[q; β] =Z−1

R exp (−βH [q]) and ZR=
∫
GR exp (−βH [q])Dq .

5. Mean field approximation and statistical independence
It is well-known that vorticity equations like (3.3), the Vlasov equation, and other

transport equations develop fine structure in the course of time. Because of this
Lynden-Bell (1967) proposed a coarse-graining procedure to obtain a most probable
state. He divided phase space up into hyper-fine cells that are assumed to be capable
of resolving the fine structure. These are the m-cells referred to in § 4.1, which have
a scale size δ. Experimentally δ is determined by the resolution, but in ideal theory
the fine structure can become arbitrarily fine and so a limiting procedure is required.
In addition Lynden-Bell (1967) proposed larger cells, which we have called M-cells,
that characterize a macroscopic scale ∆. The M-cells contain many m-cells that can
be freely exchanged within an M-cell without changing any macroscopic quantity.
Thus one is able to count states and obtain an expression for a coarse-grained or
mean field entropy that can be maximized subject to constraints. Later, Miller (1990)
and Robert & Sommeria (1991) reconstructed and improved this formulation. Miller
defined m-cells and M-cells based on scales with the property that the energy averaged
over M-cells approximates the energy averaged over m-cells. However, we argue that
the most important condition for separating the M-cell and m-cell scale lengths is
statistical independence, which ensures near independence of the probability densities
of M-cells, which are viewed as subsystems, and is associated with near additivity of
the constraints. These are crucial properties.

Experimentally the two scales can be demonstrated as in figure 2. Observe in plot
(a) of this figure the fine-scale structure in the potential vorticity, while in plot (b)
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Figure 2. The time-averaged potential vorticity (a) and the streamfunction (b) in the Rossby
wave frame. The figures on the left show the fields in the rotating tank; the figures on
the right show the same fields unwrapped. The streamfunction field is smoother than the
potential vorticity field since the vorticity is given by a second derivative (the Laplacian) of
the streamfunction. Hence the characteristic length scale in the azimuthal direction is larger
for the streamfunction than for the potential vorticity.

the streamfunction, due to the integration over the Green’s function, is considerably
smoother. We take the upper scale to be δ and the lower scale to be ∆.

5.1. Counting states

According to Lynden-Bell’s statistics, the number of ways to distribute m-cells into
M-cells is

W =
∏

r

Nr!∏
I

N (I )
r !

∏
I

N (I )!(
N (I ) −

∑
r

N (I )
r

)
!

(5.1)

where Nr is the total number of m-cells with the rth value of potential vorticity in the
whole space, and N (I )

r is the total number of m-cells with the rth value of potential
vorticity in the I th M-cell. Also, N (I ) is the total number of m-cells in the I th M-cell.
The first product in (5.1) represents the number of ways to distribute Nr m-cells into
groups of {N (I )

r }, where I counts all M-cells, and the second product is the number
of ways to distribute inside an M-cell. Also, N (I ) −

∑
r N (I )

r can be understood as the
number of empty m-cells. Lynden-Bell proposed this manner of counting for stellar
dynamics (Lynden-Bell 1967, see also Chavanis et al. 1996), where m-cells represent
stars, which are considered to be distinguishable, and there may be empty m-cells.
However, the statistics for the two-dimensional continuum Euler model is a special
case of Lynden-Bell’s general counting procedure.
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In Miller’s application to the two-dimensional continuum Euler model, he assumes
that all m-cells are occupied by a vortex and these vortices are indistinguishable if they
have the same value of vorticity. Because there are no empty m-cells, N (I ) =

∑
r N (I )

r

and because the m-cells are indistinguishable, a factor of
∏

r 1/(Nr!) is added. This
counting produces

W =
∏

I

N (I )!∏
r

N (I )
r !

. (5.2)

The above equation already involves statistical independence among different M-cells.
Boltzmann proposed the entropy as a measure of the number of possible

configurations of the system. Therefore, the entropy S is defined to be the logarithm
of the total number of configurations, ln W . If N (I )

r is large, Stirling’s formula gives

S = ln W ∼= −
∑
r,I

(
N (I )

r

)
ln

(
N (I )

r

N (I )

)
. (5.3)

In the continuum limit of potential vorticity levels, N (I )
r /N (I ) is replaced by PM (ζ ; x, y),

and
∑

r,I by
∫

dζ dx dy. In short, the index I represents the coordinates for the
discretized M-cells and the index r represents the ordered level sets of potential
vorticity inside the M-cells. Thus, it is replaced by the continuum vorticity variable
ζ , the vorticity on an M-cell. With these observations, the resulting total mean field
entropy is seen to be

SM [PM ] = −
∫

PM (ζ ; x, y) ln PM (ζ ; x, y) dζ dx dy = −
∫
〈ln PM〉M dx dy (5.4)

where PM (ζ ; x, y) is the probability density in the mean field approximation. The
density PM (ζ ; x, y) is centred at the point (x, y) and satisfies the normalization∫

PMdζ = 1. The integration over dx dy can be viewed as a sum over the M-cells
that cover the domain of the fluid. The second equality of (5.4) follows from the
definition 〈A〉M =

∫
APM dζ , and thus SM [PM ] can be naturally termed the (mean

field) Boltzmann–Gibbs entropy.
In closing this subsection, we reiterate that the potential vorticity variable q is a

field variable, a function of coordinates. However, when we introduced the probability
density PM on M-cells, we used ζ , an independent variable, to represent the values of
the potential vorticity on an M-cell.

5.2. Mean field canonical distribution

Given the mean field entropy SM we can proceed to obtain the mean field density
PM (ζ ; x, y) as the most probable state by extremization subject to particular mean
field constraints. These constraints and their corresponding Langrange multipliers are
given as follows:

(a) The Hamiltonian constraint is obtained by replacing the vorticity variable q in
H [q] with its mean field average, to obtain a mean field energy,

HM [PM ] =
1

2

∫
(ζPM (ζ ; x, y)− h) ζ ′PM (ζ ′; x ′, y ′)G(x, y; x ′, y ′) dζ dx dy dζ ′dx ′dy ′

=
1

2

∫
〈ψ〉M (〈ζ 〉M − h) dx dy (5.5)
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where 〈ζ 〉M =
∫

ζPM dζ and 〈ψ〉M is defined by

〈ζ 〉M = −∇2〈ψ〉M + h. (5.6)

The Lagrange multiplier associated with this constraint is taken to be the constant
value, −β , where the minus sign is by convention.

(b) The normalization constraint is
∫

PMdζ = 1. This is a normalization on each
M-cell; thus, although PM depends on position, the integration does not. Because this
is a constraint for each point (x, y), the Lagrange multiplier in this case depends on
position. We call it γ (x, y), and the quantity that appears in the variational principle
is

NM [PM ] =

∫
γ (x, y)PM (ζ ; x, y) dζ dx dy. (5.7)

(c) The mean field Casimir constraint, roughly speaking, contains the information
that on average, the area between any two contours of vorticity remains constant in
time. More precisely, the quantity g(ζ ) =

∫
PM dx dy is taken to be constant. Because

this is true for all ζ , the Lagrange multipler µ is likewise a function of ζ and the
constraint can be written as

CM [PM ] = −β

∫
µ(ζ )g(ζ ) dζ = −β

∫
µ(ζ )PM (ζ ; x, y) dζ dx dy, (5.8)

where the prefactor of −β is again by convention. This constraint is the mean field
version of the family of Casimir invariants C[q].

Now we are in position to obtain the most probable state by extremizing the
quantity FM = SM − βHM + NM + CM , i.e. upon functional differentiation with respect
to PM , δFM/δPM = 0 implies

PM (ζ ; x, y; β, µ) =Z−1
M e−β[ζ 〈ψ〉M−µ(ζ )], (5.9)

where ZM =
∫

e−β[ζ 〈ψ〉M−µ(ζ )] dζ and evidently PM is normalized. Equation (5.9) is the
mean field counterpart to (4.6) and could aptly be termed the canonical (Gibbs)
mean field distribution. The above variational principle and extremal distribution
(5.9) appeared in essence in an appendix of Lynden-Bell (1967).

Given (5.9) we are in a position to calculate 〈ζ 〉M and then substitute the result
into (5.6). This gives the mean field Poisson equation,

∇2〈ψ〉M =Z−1
M

∫
ζ e−β[ζ 〈ψ〉M−µ(ζ )] dζ + h. (5.10)

Versions of this equation have been solved in various references (e.g. Robert &
Sommeria 1991; Miller 1990; Majda & Holen 1997), but we will not do this here.

We conclude this subsection by giving a heuristic connection between 〈 〉M , a
prescription for averaging functions, and 〈 〉c, a prescription for averaging functionals.
Consider the functional q(x ′, y ′), by which we mean the evaluation of the function q

at the point (x ′, y ′), and evaluate

〈q(x ′, y ′)〉c =

∫
G

q(x ′, y ′) Pc[q; β,C]Dq. (5.11)

If we rewrite (5.11) as an integral on M-cells, where q(x ′, y ′) is qI ′ , write Dq =
∏

J dqJ ,
and then assume statistical independence of M-cells, Pc =

∏
I PI , we obtain

〈q(x ′, y ′)〉c =

∫
qI ′

∏
I

PI

∏
J

dqJ =

∫
qI ′ PI ′ dqI ′ =

∫
ζPMdζ = 〈ζ 〉M. (5.12)
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This derivation emphasizes the need for near statistical independence of M-cell
subsystems.

5.3. Ruggedness and additivity

Classical statistical mechanical treatments of the canonical ensemble allow subsystems
to interact and exchange energy, but their interaction is assumed to be weak and the
details of the interaction are usually ignored in calculations. Neglect of the interaction
energy results in the energy being equal to the sum of the energies of the individual
subsystems, i.e. the energy is an additive quantity. In conventional treatments only
additive invariants are used in calculating the most probable distributions, and in
some treatments (e.g. Landau & Lifshitz 1980) this requirement is explicitly stated.
The reason for this is that additive invariants give rise to statistical independence of
subsystems. In our treatment of fluids, subsystems are M-cells and so we consider
invariants that are additive over these regions. There is a close connection between
ruggedness of invariants and the property of additivity. We show that only the
rugged invariants are additive, and thus they characterize the statistical properties
of M-cells. In § 5.4 and § 5.5 we will see that experimental results support this
reasoning.

Kraichnan & Montgomery (1980) Fourier transformed and truncated to obtain
a finite-dimensional system. They argued that the truncated remnants of the total
vorticity, enstrophy, and energy are the only invariants to be used in a statistical
mechanics treatment because these invariants are rugged, i.e. remain invariants of
the truncated system. They also appear to be aware that these invariants possess the
property of additivity, but they do not emphasize this point. Although Turkington
(1999) has argued that this kind of truncation does not properly handle small-
scale behaviour, we find that this theory does a fairly good job at predicting the
energy spectrum, but we will report on this elsewhere. We argue in general that such
invariants are important because they are the only additive invariants. Below we
consider a somewhat more general setting.

Because of Parseval’s identity, the quadratic invariants are additive and higher
order invariants are not. To see this, suppose we define M-cells to be composed of
amplitudes of some subsets of Fourier modes, which we denote by κI . Then a sum
over modes can be done in groupings, i.e.

∑
k =

∑
I

∑
κI

. (This is the idea behind
spectral reduction (Bowman, Shadwick & Morrison 1999), a computational method
where groupings of Fourier modes (bins) are described by a single representative.)
For the quadratic Casimir invariant, the enstrophy, we have

C2 =

∫
q2 dx dy = (2π)2

∑
k

|qk|2, (5.13)

and defining an M-cell enstrophy by C
(I )
2 = (2π)2

∑
κI
|qk|2, we obtain C2 =

∑
I C

(I )
2 .

Similarly, the energy can be written as a sum over M-cell energies, E =
∑

I E(I ).
The linear Casimir invariant C1 =

∫
q dx dy merely reduces to the zeroth Fourier

coefficient, and is thus in a trivial sense additive. Higher order invariants,
Cn =

∫
qn dx dy for n > 2, have Fourier representations that are not reducible to

expressions in terms of a single sum over M-cells.
The discretized lattice model has properties similar to those described above. The

quadratic Casimir invariant and energy reduce to sums over a finite number of m-cell
lattice variables, qi , hi and ψi , which are potential vorticity, height, and streamfunction
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represented in terms of the kernel function Ki of § 4 as follows:

C2 =

∫
q2 dx dy =

∑
i,j

∫
KiKjqiqj dx dy =

∑
i,j

qiZijqj ,

H =
1

2

∫
qψ dx dy =

1

2

∑
i,k

∫
KiKk(qi − hi)ψk dx dy

=
1

2

∑
i,k

(qi − hi)Zikψk =
∑
i,j

(qi − hi)Ẑij (qj − hj ),




(5.14)

where Zij =
∫

KiKj dx dy and Ẑij =
∑

k ZikMkj are symmetric commuting matrices.
These invariants are rugged, i.e they are conserved by the finite dynamical system
obtained by projection onto the lattice. In addition, because Z and Ẑ commute,
one can always find an orthogonal matrix O that satisfies Z=OTDO and Ẑ=OTD̂O,
where Dij = diδij and D̂ij = d̂ iδij are diagonal matrices. Defining q ′= qO, h′= hO and
ψ ′= ψO, the enstrophy and energy become

C2 =
∑
i,j

q ′iDijq
′
j =

∑
i

di(q
′
i)

2 =
∑

I

∑
κI

di(q
′
i)

2

H =
∑

i

d̂ i(q
′
i − h′i)

2 =
∑

I

∑
κI

d̂ i(q
′
i − h′i)

2 ,




(5.15)

where I is the index for the I th M-cell and κI denotes the set of m-cells in the I th
M-cell.

This coordinate transformation simultaneously diagonalizes the quadratic Casimir
invariant and the energy. However, higher-order Casimir invariants are in general
not rugged and are in general not simultaneously diagonalizable. Thus, higher order
invariants are not additive, which means M-cells share contributions from these
invariants. In this sense, invariants of order higher than quadratic are not useful for
describing the statistics of M-cells, which by assumption are independent.

5.4. Statistically independent subsystems

Now we turn to the question of how to find subsystems, i.e. how to a find a
good definition of the M-cells. First we note that flows inside the rotating tank
with the sloped bottom have azimuthal undulations in most physical quantities
(streamfunction, potential vorticity, etc.), and these undulations have been identified
as Rossby waves (del-Castillo-Negrete & Morrison 1992; Solomon et al. 1993). In
a co-rotating frame, these waves propagate in the rotation direction at constant
velocity. Thus, by shifting to a frame moving at the phase velocity of the Rossby
wave, we obtain a pattern that is statistically stationary on large scales. For example,
the wavy patterns corresponding to the time-averaged streamfunction and potential
vorticity are shown in figure 2. As noted before, the streamfunction is fairly smooth,
characteristic of the scale ∆, is monotonically decreasing in the radial direction,
and describes a strong zonal flow. However, the time-averaged potential vorticity is
scattered with fine structure in space, the δ scale, but still has a wavy mean pattern
similar to that of the time-averaged streamfunction. So, this suggests that the first
step toward defining M-cells is to consider a frame moving at the phase velocity of
the Rossby wave.

Having determined the frame, we seek M-cells that are statistically independent.
Because strong correlation in a preferential direction might affect the geometry of
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Figure 3. Contours of the correlation function Ccor(�r, r�θ ) illustrating the anisotropic
nature of the potential vorticity field, which has longer range correlation in the azimuathal
direction than in the radial direction (cf. figure 2).

M-cells and associated additive invariants, we have measured the correlation function,

Ccor(�r, r�θ ) =
1

T

∫ T

0

∫
q(r, rθ; t)q(r + �r, rθ + r�θ; t)r dr dθ∫

q(r, rθ; t)2r dr dθ

dt, (5.16)

where (θ, r) are the usual polar coordinates. From a large data set of PIV
measurements we obtain the time average of the velocity field, whence we calculate
the potential vorticity at different positions. Then the integrals of (5.16) are performed
with the spatial limits being the bulk of the area occupied by the fluid with a resolution
of δ ≈ 0.8 cm and the time limit taken to be 80 revolutions with 47 measurements.
The result of this procedure is presented in figure 3, which shows contours of Ccor

plotted on a (�θ, �r)-plane. The highly anisotropic nature of the contours suggests
there is significantly less correlation in the radial direction than in the azimuthal
direction. Thus to achieve consistent independence the shape of an M-cell should be
elongated.

In the course of tracking blobs of fluid we generally observe that to good
approximation such blobs follow contours of the time-averaged streamfunction. This,
together with the the Ccor plot, suggests that a good coordinate for dividing the system
into subsystems is the time-averaged streamfunction,

ψ̄(r, θ) =
1

T

∫ T

0

ψ(θ, r; t) dt. (5.17)

Contours of ψ̄ tend to be smooth and, we argue, are part of a natural coordinate
system for describing turbulence with a mean flow that has slow spatial dependence.
(We have also considered q̄ but found it to be not as good because of its greater
variability.) To complete the coordinate system, we introduce a coordinate χ , which
is conjugate to ψ̄ and therefore satisfies

1

r

∂ψ̄

∂θ

∂χ

∂r
− 1

r

∂ψ̄

∂r

∂χ

∂θ
= 1. (5.18)

Thus the coordinate transformation (θ, r)←→ (χ, ψ̄) satisfies rdr dθ = dχ dθ .
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We propose that contours of ψ̄ define M-cells, which we take to be of small
(infinitesimal) width in this coordinate, and we propose that the χ-coordinate at fixed
ψ̄ represents a continuum of m-cells. We imagine an M-cell to be a region (nearly a
curve) at fixed ψ̄ . Hence with this definition, the probability density PMexp

, depends

only on the potential vorticity variable ζ and on the coordinate ψ̄ , i.e. PMexp
(ζ ; ψ̄)

is the probability of finding a potential vorticity value ζ in the ψ̄ M-cell. Thus the
ensemble average of an arbitrary function f is written as

〈f 〉Mexp
(ψ̄) =

∫
f (ζ, ψ̄)PMexp

(ζ ; ψ̄) dζ, (5.19)

where PMexp
is normalized as

∫
PMexp

dζ = 1. In practice we can determine the
probability PMexp

from data by the relative frequency definition (cf. § 5.5), and then
proceed to calculate (5.19). However, this is equivalent to averaging over χ and t , e.g.
〈ζ 〉Mexp

=≺q�χ , where ≺q�χ =
∫

q dχ/
∫

dχ . Given 〈ζ 〉Mexp
and using (5.6) to define

〈ψ〉Mexp
we similarly have the equivalence 〈ψ〉Mexp

(ψ̄) =≺ψ(ψ̄, χ; t)�χ = ψ̄ , where
the second equality follows by definition. The undular streamfunction of figure 2
mainly represents Rossby waves. These wavy patterns are quite robust and often
behave as barriers to mixing. In the Rossby wave frame, our data indicate that
the instantaneous streamfunction is close to the time-averaged streamfunction, i.e.
≺ ψ(ψ̄, χ; t) �χ deviates from ψ̄ by less than 10%. The above comments can be
viewed as an experimental verification of ergodicity.

In terms of the above notation the energy and enstrophy densities on M-cells can
be written as

〈H 〉Mexp
(ψ̄) =

1

2

[∫
ζ ψ̄PMexp

(ζ ; ψ̄) dζ− ≺ ψ̄h(χ, ψ̄)�χ

]

=
1

2
≺ ψ̄[q(χ, ψ̄, t)− h(χ, ψ̄)]�χ ,

〈C2〉Mexp
(ψ̄) =

1

2

∫
ζ 2PMexp

(ζ ; ψ̄) dζ =
1

2
≺q2(χ, ψ̄, t)�χ ,




(5.20)

and two quantities that measure spatial and temporal fluctuations of these invariants
can be compactly written as follows:

�T C2(ψ̄) =

[
(≺q2�χ −≺q2�χ )2

]1/2

≺q2�χ

, (5.21)

�ΨC2(t) =

[
≺ (≺q2�χ − ≺q2�χψ̄ )2�ψ̄

]1/2

≺q2�χψ̄

, (5.22)

with similar expressions for �TH (ψ̄) and �ΨH (t). Figure 4 depicts these quantities.
Panel (a) shows temporal fluctuations as a function of the spatial coordinate ψ̄ .
The middle regions of the experiment, where strong zonal flows exist, is describable
by statistical mechanics. However, near the walls, corresponding to high and low ψ̄

values, statistical mechanics fails because of large fluctuations. Similarly, in panels (b)
and (c) the spatial fluctuations are plotted versus time, and it is observed that these
fluctuations are quite small. We have measured similar quantities for the cubic and
quartic Casimir invariants and the fluctuations are two or three times greater.

An integrated measure of the goodness of our streamfunction-based M-cells is
displayed in table 1. Here we have integrated ≺ �T H �ψ̄ and ≺ �T C2 �ψ̄ over
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Figure 4. (a) Enstrophy fluctuations �T C2(ψ̄) (equation (5.21)) and energy fluctuations
�T H (ψ̄) as a function of ψ̄ . The fluctuations are small, indicating that energy and enstrophy
are nearly conserved for our choice of subsystem. (b) Total enstrophy variations �ΨC2(t)
(equation (5.22)) and (c) total energy variations �ΨH2(t) with time; the variation is small,
indicating that the quantities for our choice of subsystem are almost conserved in time.

Fluctuation measure ≺�T H �ψ̄ ≺�T C2�ψ̄

Square cells 0.2233 0.6425

Streamfunction cells 0.0343 0.0627

Table 1. Comparison of fluctuations for square cells with our streamfunction-based cells. Both
the energy fluctuation measure ≺�T H �ψ̄ and enstrophy fluctuation measure ≺�T C2�ψ̄ are
considerably smaller with the streamfunction-based cells. These small fluctuations allow the
division of the system into M-cells, consistent with the statistical independence and additivity
assumptions of statistical mechanics.

central values of ψ̄ and compared them with counterparts derived using square cells.
By this measure, streamfunction-based cells are nearly ten times better than square
cells.

Thus, in summary, we have strong evidence supporting the use of streamfunction-
based M-cells. The evidence of figure 4 and table 1 imply both statistical independence
and the additive nature of the quadratic invariants of these macro-cells.

5.5. Prediction for PDFs

Based on the arguments in the previous section, we consider only two invariants out
of the infinitely many conserved by the ideal dynamics. Consequently, we obtain the
following equilibrium distribution:

PMexp
(ζ ; ψ̄) =Z−1

Mexp
exp(−βψ̄ζ − γ ζ 2), (5.23)

where ZMexp
=

∫
exp(−βψ̄ζ − γ ζ 2) dζ depends only on ψ̄ . Note, the function h has

cancelled out in the normalization. This probability density function (PDF) has the
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Figure 5. The measured probability distribution of potential vorticity (data points) on a
typical M-cell is nearly Gaussian (dashed line), in accord with (5.23), as illustrated by these
plots on (a) linear and (b) logarithmic scales. In contrast, the potential vorticity of the whole
system, shown in (c) and (d) respectively, departs significantly from a Gaussian.

form of a Gaussian that is shifted by βψ̄/2γ , a position-dependent term that can be
interpreted as a sort of ‘local wind’.

In figure 5 we compare (5.23) with experimental results. Figures 5(a) and 5(b)
show that experimental data on a typical M-cell closely agree with the Gaussian
distribution of (5.23). Each distribution is shifted by its mean value of potential
vorticity 〈ζ 〉Mexp

. Figures 5(c) and 5(d) show the total probability P tot (ζ ), which is the

sum of the probabilities over all the M-cells, i.e. P tot (ζ ) = ≺ PMexp
(ζ ; ψ̄) �ψ̄ . These

plots are decidedly non-Gaussian.
The source of the small deviation in the tails of the distribution plotted in figure 5(b)

can be attributed to experimental resolution and sample size. We analysed this by
considering the scaling of the skewness and kurtosis with respect to the number of
data points N and the experimental subsystem width �ψ̄ . For a Gaussian distribution
the kurtosis is 3 and the skewness is zero. If we fix N (large), our data indicate that
the kurtosis approaches 3 as (�ψ̄)a , where the exponent a is less than unity and is
approximately 0.5 for our last (smallest �ψ̄) data points. At fixed �ψ̄ (small) we
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Figure 6. The ensemble-averaged potential vorticity 〈q〉Mexp
exhibits a dependence on the

time-averaged streamfunction ψ̄ that is linear except near the walls (at the ends of the
range of ψ̄). The dots are mean values of 〈q〉Mexp

, and the vertical lines correspond to
standard deviations of 〈q〉Mexp

at a fixed ψ̄ . The data fit well the straight line (a least-squares
fit), in accord with the prediction of (5.24), where the slope is the ratio of two Lagrange
multipliers.

find that the tails decrease as we increase N . A similar examination of the skewness
reveals randomness about the value zero.

The next question is, what is the most probable value of potential vorticity in each
M-cell? The probability distribution of (5.23) gives a relation between the averaged
vorticity and the streamfunction,

〈ζ 〉Mexp
=

∫
ζPMexp

(ζ ; ψ̄) dζ = −εψ̄, (5.24)

which follows by elementary integration. Here ε = β/(2γ ) is the ratio of two
Lagrange multipliers. Figure 6 shows a linear relation between the ensemble-averaged
potential vorticity 〈ζ 〉Mexp

and the time-averaged streamfunction ψ̄ , as predicted by
(5.24).

Therefore, our theoretical predictions based on a mean field approximation are in
good accord with PDFs on M-cells and the averaged values of potential vorticity
and streamfunction from experiments. Our theory also indicates that equilibrium can
be locally achieved in M-cells, even though the system as a whole is turbulent and
non-Gaussian.

6. Conclusions
In this paper we have emphasized the relationship between additive invariants and

statistical independence: probability densities that result from entropy maximization
principles, such as that of § 5.2, will decompose into a product over subsystems
if the entropy is logarithmic (extensive) and the invariants included as constraints
are additive over subsystems (M-cells). We have also emphasized that additivity
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and, consequently, independence depend on the definition of subsystem. This idea
appears, at least implicitly, in conventional statistical mechanics. For example, in the
classical calculation of the specific heat of a solid, where one considers a solid to
be a collection of lattice sites with spring-like nearest neighbour interactions, the
Hamiltonian achieves the form of a sum over simple harmonic oscillators. However,
such a diagonal form requires the use of normal coordinates, and only then is the
partition function equal to a product over those of the individual oscillators. Thus the
notions of subsystem (here a single oscillator), additivity, and statistical independence
are intimately related.

In our application of statistical mechanics to inhomogeneous damped and driven
turbulence, we have discovered experimentally that a good definition of subsystem
is provided by the temporal mean of the streamfunction. With this definition, the
quadratic invariants (energy and enstrophy) are additive, and the concomitant
probability density of (5.23) agrees quite well with experimental results for both
the distribution of vorticity, as depicted in figure 5(a, b), and the mean state, as
depicted in figure 6.

An alternative interpretation of our results can be obtained by the counting
argument of § 5.1. Our definition of subsystem amounts to the idea that potential
vortices on the same contour of time-averaged streamfunction can exchange their
positions with little change in the energy and enstrophy. However, the relocation of
two potential vortices that are on different contours of the streamfunction should
result in a large change of the invariants. In this sense, the number of possible
configurations in phase space can be counted, and the maximization of the entropy
so obtained gives our result.

Our discussion of statistical independence and additivity has been heuristic, in the
spirit of Boltzmann and Gibbs. We suggest that a more rigorous development could
use the techniques described in other works (e.g. Miller et al. 1992; Majda & Holen
1997; Turkington 1999) adapted to our ψ̄-coordinate that describes our subsystems.
For example, one could begin with an appropriate sequence of lattice models and
obtain a continuum limit.

Although in this paper we have focused on a geostrophic fluid, our procedure is of
general utility and is applicable to physical systems governed by a variety of transport
equations. The unifying formalism is the non-canonical Hamiltonian description of
§ 3, which plays the unifying role played by finite-dimensional canonical Hamiltonian
systems in conventional statistical mechanics. Thus we expect our approach to apply
to Vlasov–Poisson dynamics, kinetic theories of stellar dynamics, drift-wave plasma
models, and other single-field models that possess the non-canonical Poisson bracket
of (3.5). Generalization to multi-field models such as reduced magnetohydrodynamics,
stratified fluids, and a variety of physics models governed by generalization of the
Poisson bracket (Thiffeault & Morrison 2000) of (3.5) provides an avenue for further
research.
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Texas.

REFERENCES

Aubert, J., Jung, S. & Swinney, H. L. 2002 Observations of zonal flow created by potential vorticity
mixing in a rotating fluid. Geophys. Res. Lett. 29, 1876.



454 S. Jung, P. J. Morrison and H. L. Swinney

Baroud, C. N., Plapp, B. B., She, Z. S. & Swinney, H. L. 2002 Anomalous self-similarity in a
turbulent rapidly rotating fluid. Phys. Rev. Lett. 88, 114501.

Baroud, C. N., Plapp, B. B., Swinney, H. L. & She, Z. S. 2003 Scaling in three-dimensional and
quasi-two-dimensional rotating turbulent flows. Phys. Fluids 15, 2091–2104.

Boucher, C., Ellis, R. S. & Turkington, B. 2000 Derivation of maximum entropy principles in
two-dimensional turbulence via large deviations. J. Statist. Phys. 98, 1235–1278.

Bouchet, F. & Sommeria, J. 2002 Emergence of intense jets and Jupiter’s Great Red Spot as
maximum-entropy structures. J. Fluid Mech. 464, 165–207.

Bowman, J. C., Shadwick, B. A. & Morrison, P. J. 1999 Spectral reduction: a statistical description
of turbulence. Phys. Rev. Lett. 83, 5491–5494.

Burgers, J. M. 1929a On the application of statistical mechanics to the theory of turbulent fluid
motion I. Koninklijke Nederlandse Akad. Wetenschappen. 32, 414.

Burgers, J. M. 1929b On the application of statistical mechanics to the theory of turbulent fluid
motion II. Koninklijke Nederlandse Akad. Wetenschappen. 32, 632.

Burgers, J. M. 1929c On the application of statistical mechanics to the theory of turbulent fluid
motion III. Koninklijke Nederlandse Akad. Wetenschappen. 32, 818.

Burgers, J. M. 1933a On the application of statistical mechanics to the theory of turbulent fluid
motion IV. Koninklijke Nederlandse Akad. Wetenschappen. 36, 276.

Burgers, J. M. 1933b On the application of statistical mechanics to the theory of turbulent fluid
motion V. Koninklijke Nederlandse Akad. Wetenschappen. 36, 390.

Burgers, J. M. 1933c On the application of statistical mechanics to the theory of turbulent fluid
motion VI. Koninklijke Nederlandse Akad. Wetenschappen. 36, 487.

Burgers, J. M. 1933d On the application of statistical mechanics to the theory of turbulent fluid
motion VII. Koninklijke Nederlandse Akad. Wetenschappen. 36, 620.

del-Castillo-Negrete, D. & Morrison, P. J. Hamiltonian chaos and transport in quasigeostrophic
flows. In Research Trends in Physics: Chaotic Dynamics and Transport in Fluids and Plasmas
(ed. I. Prigogine), pp. 181–207. American Institute of Physics.

Chavanis, P. H., Sommeria, J. & Robert, R. 1996 Statistical mechanics of two-dimensional vortices
and collisionless stellar systems. Astro. J. 471, 358–399.

Ehrenfest, P. & Ehrenfest, T. 1959 The Conceptual Foundations of the Statistical Approach in
Mechanics. Cornell University Press. (Translated and revised reissue of Encyklopädie der
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